Od-characterization of Almost Simple Groups Related to L2(49)

نویسندگان

  • Liangcai Zhang
  • Wujie Shi
چکیده

In the present paper, we classify groups with the same order and degree pattern as an almost simple group related to the projective special linear simple group L2(49). As a consequence of this result we can give a positive answer to a conjecture of W. J. Shi and J. X. Bi, for all almost simple groups related to L2(49) except L2(49) · 22. Also, we prove that if M is an almost simple group related to L2(49) except L2(49) · 22 and G is a finite group such that |G| = |M | and Γ(G) = Γ(M), then G ∼=M .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OD-characterization of almost simple groups related to U3(11)

Let $L := U_3(11)$. In this article, we classify groups with the same order and degree pattern as an almost simple group related to $L$. In fact, we prove that $L$, $L:2$ and $L:3$ are OD-characterizable, and $L:S_3$ is $5$-fold OD-characterizable.

متن کامل

OD-characterization of $U_3(9)$ and its group of automorphisms

Let $L = U_3(9)$ be the simple projective unitary group in dimension 3 over a field  with 92 elements. In this article, we classify groups with the same order and degree pattern as an almost simple group related to $L$. Since $Aut(L)equiv Z_4$ hence almost simple groups related to $L$ are $L$, $L : 2$ or $L : 4$. In fact, we prove that $L$, $L : 2$ and $L : 4$ are OD-characterizable.

متن کامل

OD-characterization of Almost Simple Groups Related to displaystyle D4(4)

Let $G$ be a finite group and $pi_{e}(G)$ be the set of orders of all elements in $G$. The set $pi_{e}(G)$ determines the prime graph (or Grunberg-Kegel graph) $Gamma(G)$ whose vertex set is $pi(G)$, the set of primes dividing the order of $G$, and two vertices $p$ and $q$ are adjacent if and only if $pqinpi_{e}(G)$. The degree $deg(p)$ of a vertex $pin pi(G)$, is the number of edges incident...

متن کامل

OD-Characterization of almost simple groups related to $L_{3}(25)$

Let $G$ be a finite group and $pi(G)$ be the set of all the prime‎ ‎divisors of $|G|$‎. ‎The prime graph of $G$ is a simple graph‎ ‎$Gamma(G)$ whose vertex set is $pi(G)$ and two distinct vertices‎ ‎$p$ and $q$ are joined by an edge if and only if $G$ has an‎ ‎element of order $pq$‎, ‎and in this case we will write $psim q$‎. ‎The degree of $p$ is the number of vertices adjacent to $p$ and is‎ ...

متن کامل

OD-characterization of $S_4(4)$ and its group of automorphisms

Let $G$ be a finite group and $pi(G)$ be the set of all prime divisors of $|G|$. The prime graph of $G$ is a simple graph $Gamma(G)$ with vertex set $pi(G)$ and two distinct vertices $p$ and $q$ in $pi(G)$ are adjacent by an edge if an only if $G$ has an element of order $pq$. In this case, we write $psim q$. Let $|G= p_1^{alpha_1}cdot p_2^{alpha_2}cdots p_k^{alpha_k}$, where $p_1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008